# Intro

- Silicon wafers that comprise an array of chips are susceptible to defects.
- While some defects are expected (yield < 100%), systematic patterns of defective chips in a wafer are indicative of problems in the process line.
- The 'pattern' of defective chips in a wafer is indicative of the nature/location of the problem.
- Typically wafer maps are reviewed manually and dispositioned into error types.
- This project looks at training a conv-net to identify and classify defects in semiconductor wafers

### NORMAL



• Wang et al, IEEE Transactions on Semiconductor Manufacturing, 2020

#### **Semiconductor Wafer Defect Classification**

# **Dataset – Defect Types**

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.



# Dataset – 2 Defects Types in a Wafer

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.



# Dataset – 3 Defects Types in a Wafer

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.



# Dataset – <u>4</u> Defects Types in a Wafer

- Public dataset from fab in China
- Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or offwafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.
- There are wafers with 0, 1, 2, 3 and 4 defect types.



# **Dataset – Counts and Splits**



Talha Arshad

| MaxPool2D |
|-----------|
| ReLu      |
| BatchNorm |
| Conv2D    |

• Ioffe & Szegedy (2015) *arXiv: 1502.03167v3* • Li et al (2018) *arXiv: 1801.05134v1* 



| MaxPool2D |
|-----------|
| ReLu      |
| BatchNorm |
| Conv2D    |
| MaxPool2D |
| ReLu      |
| BatchNorm |
| Conv2D    |

• Ioffe & Szegedy (2015) *arXiv: 1502.03167v3* • Li et al (2018) *arXiv: 1801.05134v1* 

| FC (8 units) + Sigmoid |
|------------------------|
| FC + ReLu              |
| GlobalAveragePooling2D |
| MaxPool2D              |
| ReLu                   |
| BatchNorm              |
| Conv2D                 |
| MaxPool2D              |
| ReLu                   |
| BatchNorm              |
| Conv2D                 |

• Ioffe & Szegedy (2015) *arXiv: 1502.03167v3* • Li et al (2018) *arXiv: 1801.05134v1* 

LOSS

**Binary Crossentropy** 

| FC (8 units) + Sigmoid |
|------------------------|
| FC + ReLu              |
| GlobalAveragePooling2D |
| MaxPool2D              |
| ReLu                   |
| BatchNorm              |
| Conv2D                 |
| MaxPool2D              |
| ReLu                   |
| BatchNorm              |
| Conv2D                 |

• Ioffe & Szegedy (2015) *arXiv: 1502.03167v3* • Li et al (2018) *arXiv: 1801.05134v1* 



LOSS

**Binary Crossentropy** 

| FC (8 units) + Sigmoid |
|------------------------|
| FC + ReLu              |
| GlobalAveragePooling2D |
| MaxPool2D              |
| ReLu                   |
| BatchNorm              |
| Conv2D                 |
| MaxPool2D              |
| ReLu                   |
| BatchNorm              |
| Conv2D                 |
| Random Flip            |

• Ioffe & Szegedy (2015) *arXiv: 1502.03167v3* • Li et al (2018) *arXiv: 1801.05134v1* 

# **Hyperparameter Exploration**

### **Hyperparameter Values Explored**

| C1_filterSize      | 3, 5, 7          |
|--------------------|------------------|
| C1_numFilters      | 16, 32, 64       |
| C1_stride          | 1, 2             |
| P1_filterSize      | 2                |
| P1_stride          | 2                |
| C2_filterSize      | 3, 5             |
| C2_numFilters      | 64, 128          |
| C2_stride          | 1, 2             |
| P2_filterSize      | 2                |
| P2_stride          | 2                |
| FC1_numUnits       | 32, 64           |
| FC2_numUnits       | 8                |
| Total Combinations | <mark>288</mark> |

### **Training Parameters**

| Optimizer     | Adam (parm vals) |  |  |
|---------------|------------------|--|--|
| Batch Size    | 512              |  |  |
| Learning Rate | 0.01             |  |  |
| Epochs        | <mark>10</mark>  |  |  |

#### **Talha Arshad**

## Hyperparameter Exploration: Selected Training Curves



# Hyperparameter Exploration: Loss v.s. HP values



#### **Talha Arshad**

#### Semiconductor Wafer Defect Classification

# Hyperparameter Exploration: Selected HP Values

The 2 Lowest Loss Hyperparameter Combinations

| Loss             | <mark>0.0541</mark>  | <mark>0.0561</mark>   |          |
|------------------|----------------------|-----------------------|----------|
| C1_filterSize    | 7                    | 7                     |          |
| C1_numFilters    | <mark>64</mark>      | <mark>32</mark>       |          |
| C1_stride        | 2                    | 2                     |          |
| P1_filterSize    | 2                    | 2                     |          |
| P1_stride        | 2                    | 2                     |          |
| C2_filterSize    | 5                    | 5                     |          |
| C2_numFilters    | 64                   | 64                    | Selected |
| C2_stride        | 2                    | 2                     | This One |
| P2_filterSize    | 2                    | 2                     |          |
| P2_stride        | 2                    | 2                     |          |
| FC1_numUnits     | 64                   | 64                    |          |
| FC2_numUnits     | 8                    | 8                     |          |
| Total Parameters | <mark>110,472</mark> | <mark>57,460</mark> < |          |

# **Final Model Shapes**



# **Full Training**





Talha Arshad

**Semiconductor Wafer Defect Classification** 

# **Examples of Mis-labeled Wafers**



### Feature Maps from the 1<sup>st</sup> Conv Layer: DONUT



**Talha Arshad** 

Semiconductor Wafer Defect Classification

### Feature Maps from the 1<sup>st</sup> Con Layer: EDGE-LOCAL



**Talha Arshad** 

Semiconductor Wafer Defect Classification

### Feature Maps from the 1<sup>st</sup> Con Layer: EDGE-RING



**Talha Arshad** 

**Semiconductor Wafer Defect Classification** 

### Feature Maps from the 1<sup>st</sup> Con Layer: LOCAL



**Talha Arshad** 

Semiconductor Wafer Defect Classification

### Feature Maps from the 1<sup>st</sup> Con Layer: CENTER



**Talha Arshad** 

#### **Semiconductor Wafer Defect Classification**

### Feature Maps from the 1<sup>st</sup> Con Layer: SCRATCH



**Talha Arshad** 

**Semiconductor Wafer Defect Classification** 

### Feature Maps from the 1<sup>st</sup> Con Layer: **RANDOM**



**Talha Arshad** 

**Semiconductor Wafer Defect Classification** 

### Feature Maps from the 1<sup>st</sup> Con Layer: NEAR-FULL



**Talha Arshad** 

**Semiconductor Wafer Defect Classification** 

# Weighted Cost + Ensemble Model

- Train a second model in which wafers the first model mis-predicts are weighted higher in the loss.
- This weighting is applied such that:
  - Total weight of inaccurately predicted wafers =
     α ×
     Total weight of accuractely predicted wafers

| Data Splits   |              |       |              |
|---------------|--------------|-------|--------------|
| <b>76.8</b> % | <b>6.4</b> % | 10.4% | <b>6.4</b> % |
| TRÁIN         | VÁL          | ENS   | TEST         |



$$weight = \left(\mathbb{1}_{pred=true} + \mathbb{1}_{pred\neq true} \ \frac{\alpha \sum \mathbb{1}_{pred=true}}{\sum \mathbb{1}_{pred\neq true}}\right) \frac{(1+\alpha) \sum \mathbb{1}_{pred=true}}{\sum \mathbb{1}_{pred\neq true}}$$