Intro

 Silicon wafers that comprise an array of chips are susceptible to

defects. NORMAL

 While some defects are expected (yield < 100%), systematic
patterns of defective chips in a wafer are indicative of problems
in the process line.

* The ‘pattern’ of defective chips in a wafer is indicative of the
nature/location of the problem.

* Typically wafer maps are reviewed manually and dispositioned
into error types.

* This project looks at training a conv-net to identify and classify
defects in semiconductor wafers

= Defective die

e Wang et al, IEEE Transactions on Semiconductor Manufacturing, 2020 = Off-wafer
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Dataset — Defect Types

e Public dataset from fab in China

* Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or off-
wafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.

* There are wafers with 0, 1, 2, 3 and 4 defect types.
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Dataset — 2 Defects Types in a Wafer

e Public dataset from fab in China

* Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or off-
wafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.

* There are wafers with 0, 1, 2, 3 and 4 defect types.
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Dataset — 3 Defects Types in a Wafer

e Public dataset from fab in China

* Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or off-
wafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.

* There are wafers with 0, 1, 2, 3 and 4 defect types.

D-ER-S
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Dataset — 4 Defects Types in a Wafer

e Public dataset from fab in China

* Each wafer map is a 54x54 array of values identifying each location as a functional die, defective die or off-
wafer. Each label is a one-hot encoded vector indicating the presence (or absence) of 8 different defect types.

* There are wafers with 0, 1, 2, 3 and 4 defect types.

D-ER-L-S
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Dataset — Counts and Splits

Wafer Counts
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Model Architecture

RelLu
BatchNorm
Conv2D

e loffe & Szegedy (2015) arXiv: 1502.03167v3 e Li et al (2018) arXiv: 1801.05134v1
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Hyperparameter Exploration

Hyperparameter Values Explored Training Parameters
_ 3,5,7 Adam (parm vals)
 C1_numFilters 16, 32, 64 512
_ 1,2 0.01
_ 2 10
 Plstride 2
 C2filterSize 3,5
~ C2_numfilters 64, 128
 C2stride 1,2
~ P2filterSize 2
 P2stride )
~ FC1_numunits 32, 64
~ FC2_numUnits 3
288
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Hyperparameter Exploration: Selected Training Curves
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Hyperparameter Exploration: Loss v.s. HP values

C1_filterSize Cl1_numfFilters Cl_stride C2_filterSize C2_numfFilters C2_stride FC1_numUnits loss
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Hyperparameter Exploration: Selected HP Values
The 2 Lowest Loss Hyperparameter Combinations

0.0541 0.0561
7 7

C1_numfFilters 64 32

64 Selected
This One

64

L

!m

Total Parameters 110,472
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Final Model Shapes

input:
InputLayer P [(None, 52, 52, 1)] | [(None, 52, 52, 1)]
output:
. input:
RandomFlip (None, 52, 52, 1) | (None, 52, 52, 1)
output:
. input:
Conv2D | linear (None, 52, 52, 1) | (None, 26, 26, 32)
output:
input:
BatchINormalization (None, 26, 26, 32) | (None, 26, 26, 32)
output:

'

input:
Activation | relu P (None, 26, 26, 32) | (None, 26, 26, 32)
output:
. input:
MaxPooling2D (None, 26, 26, 32) | (None, 13, 13, 32)
output:

nput:
Conv2D | linear P (None, 13, 13, 32) | (None, 7, 7, 64)
output:
o input:
BatchNormalization (None, 7, 7, 64) | (None, 7, 7, 64)
output:
o input:
Activation | reln (None, 7, 7, 64) | (None, 7, 7, 64)
output:
input:
MaxPooling2D (None, 7, 7, 64) | (None, 3, 3, 64)
output:
. input:
GlobalAveragePooling2D (None, 3, 3, 64) | (None, 64)
output:
nput:
Dense | relu (None, 64) | (None, 64)
output:
input:
Dense | sigmoid (None, 64) | (None, 8)
output:
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Full Training
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Precision
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Examples of Mis-labeled Wafers

True: EL-S True: EL-L
Pred: EL

True: D-EL-S True: D-EL-L-S
Pred: D-EL ) Pred: D-EL-L
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Feature Maps from the 15t Conv Layer: DONUT
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Feature Maps from the 1%t Con Layer: EDGE-LOCAL
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Feature Maps from the 15t Con Layer: EDGE-RING
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Feature Maps from the 15t Con Layer: LOCAL
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Feature Maps from the 1%t Con Layer: CENTER
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Feature Maps from the 1%t Con Layer: SCRATCH
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Feature Maps from the 15t Con Layer: RANDOM
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Feature Maps from the 15t Con Layer: NEAR-FULL
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Weighted Cost + Ensemble Model

 Train a second model in which wafers the first

model mis-predicts are weighted higher in the Output Prediction
loss. , )
Linear Regression
* This weighting is applied such that:
* Total weight of inaccurately predicted wafers =
a X weight of i Y predt waf Prediction 1

Prediction 2

Total weight of accuractely predicted wafers

Data Splits

il Comane: Convnet trained with

Weighted Cost-Function
6.4% 10.4% 6.4%

TRAIN VAL ENS TEST |
Wafer-map

) a. Ilpred=true 1+a)X ﬂpred=true
weight = (ﬂpred=true + Lyrea#true

Z Ilpred:attrue Z Ilpred=true + Z ﬂpred:ttrue
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